Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases
نویسندگان
چکیده
Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain proteins, referred to as 'amyloidogenic proteins', with exceptional conformational plasticity and a high propensity for self-aggregation. Although the mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a common feature is the concentration of unstructured amyloidogenic monomers on bidimensional membrane lattices. Membrane-bound monomers undergo a series of lipid-dependent conformational changes, leading to the formation of oligomers of varying toxicity rich in beta-sheet structures (annular pores, amyloid fibrils) or in alpha-helix structures (transmembrane channels). Condensed membrane nano- or microdomains formed by sphingolipids and cholesterol are privileged sites for the binding and oligomerisation of amyloidogenic proteins. By controlling the balance between unstructured monomers and alpha or beta conformers (the chaperone effect), sphingolipids can either inhibit or stimulate the oligomerisation of amyloidogenic proteins. Cholesterol has a dual role: regulation of protein-sphingolipid interactions through a fine tuning of sphingolipid conformation (indirect effect), and facilitation of pore (or channel) formation through direct binding to amyloidogenic proteins. Deciphering this complex network of molecular interactions in the context of age- and disease-related evolution of brain lipid expression will help understanding of how amyloidogenic proteins induce neural toxicity and will stimulate the development of innovative therapies for neurodegenerative diseases.
منابع مشابه
Interaction of Alzheimer's β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation.
Brain cholesterol plays a critical role in Alzheimer's disease and other neurodegenerative diseases. The molecular mechanisms linking cholesterol to neurotoxicity have remained elusive for a long time, but recent data have allowed the identification of functional cholesterol-binding domains in several amyloidogenic proteins involved in neurodegenerative diseases, including Alzheimer's disease. ...
متن کاملLipid rafts , cholesterol and apoptosis in cancer and neurodegenerative diseases
The dynamic nature of membrane along with an uneven distribution of lipids leads to the formation of specialized membrane domains where proteins can selectively be included or excluded. In this regard, the dynamic and preferential clustering and packing of sphingolipids and cholesterol into moving platforms, named as lipid rafts, form membrane domains that act as scaffolds for the attachment of...
متن کاملCommon molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein
Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer's and Parkinson's diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild...
متن کاملLipid Rafts and Alzheimer’s Disease: Protein-Lipid Interactions and Perturbation of Signaling
Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein-protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, raf...
متن کاملThe Impact of Cholesterol, DHA, and Sphingolipids on Alzheimer's Disease
Alzheimer's disease (AD) is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40-42 amino acid long peptides termed β -amyloid (A β ). A β ...
متن کامل